Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 11(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100893

RESUMO

In photodynamic therapy (PDT), photosensitizers and light are used to cause photochemically induced cell death. The selectivity and the effectiveness of the phototoxicity in cancer can be increased by a specific uptake of the photosensitizer into tumor cells. A promising target for this goal is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe a polysaccharide-based nanoparticle system suitable for targeted uptake and its photochemical and photobiological characterization. The photosensitizer 5, 10, 15, 20-tetraphenyl-21H, 23H-porphyrine (TPP) was encapsulated in spermine- and acetal-modified dextran (SpAcDex) nanoparticles and conjugated with folic acid (FA) on the surface [SpAcDex(TPP)-FA]. The particles are successfully taken up by human HeLa-KB cells, and a light-induced cytotoxicity is observable. An excess of free folate as the competitor for the FRα-mediated uptake inhibits the phototoxicity. In conclusion, folate-modified SpAcDex particles are a promising drug delivery system for a tumor cell targeted photodynamic therapy.

2.
Photochem Photobiol ; 92(4): 611-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221054

RESUMO

Photodynamic therapy (PDT) is based on the cytotoxicity of photosensitizers in the presence of light. Increased selectivity and effectivity of the treatment is expected if a specific uptake of the photosensitizers into the target cells, often tumor cells, can be achieved. An attractive transporter for that purpose is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe the synthesis and photobiological characterization of polar ß-carboline derivatives as photosensitizers covalently linked to folate-tagged albumin as the carrier system. The particles were taken up by KB (human carcinoma) cells within <90 min and then co-localized with a lysosomal marker. FRα antibodies prevented the uptake and also the corresponding conjugate without folate was not taken up. Accordingly, a folate-albumin-ß-carbolinium conjugate proved to be phototoxic, while the corresponding albumin-ß-carbolinium conjugates without FA were nontoxic, both with and without irradiation. An excess of free folate as competitor for the FRα-mediated uptake completely inhibited the photocytotoxicity. Interestingly, the albumin conjugates are devoid of photodynamic activity under cell-free conditions, as shown for DNA as a target. Thus, phototoxicity requires cellular uptake and lysosomal degradation of the conjugates. In conclusion, albumin-folate conjugates appear to be promising vehicles for a tumor cell targeted PDT.


Assuntos
Carbolinas/química , Carbolinas/farmacologia , Receptor 1 de Folato/metabolismo , Ácido Fólico/química , Ácido Fólico/farmacologia , Soroalbumina Bovina , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Receptor 1 de Folato/genética , Humanos , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
3.
Free Radic Biol Med ; 65: 821-827, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973753

RESUMO

Folic acid (FA), also named vitamin B9, is an essential cofactor for the synthesis of DNA bases and other biomolecules after bioactivation by dihydrofolate reductase (DHFR). FA is photoreactive and has been shown to generate DNA modifications when irradiated with UVA (360 nm) in the presence of DNA under cell-free conditions. To investigate the relevance of this reaction for cells and tissues, we irradiated three different cell lines (KB nasopharyngeal carcinoma cells, HaCaT keratinocytes, and a melanoma cell line) in the presence of FA and quantified cytotoxicity and DNA damage generation. The results indicate that FA is phototoxic and photogenotoxic by two different mechanisms. First, extracellular photodecomposition of FA gives rise to the generation of H2O2, which causes mostly DNA strand breaks. If this is prevented, e.g., by the presence of catalase, DNA damage generated by intracellular FA becomes evident. The damage spectrum in this case consists predominantly of oxidatively generated purine modifications sensitive to the repair glycosylase Fpg, as characteristic for type I photoreactions, and is associated with the formation of micronuclei. In KB cells, the DNA damage is strongly enhanced after pretreatment with the DHFR inhibitor methotrexate, which prevents the loss of the chromophore associated with the intracellular reduction of FA by DHFR. The results indicate that FA is photoreactive in cells and gives rise to nuclear DNA damage under irradiation.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Ácido Fólico/farmacologia , Catalase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Ácido Fólico/farmacologia , Humanos , Metotrexato/farmacologia , Processos Fotoquímicos , Superóxido Dismutase/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo
4.
Org Biomol Chem ; 11(32): 5300-9, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23842892

RESUMO

It has been well documented that ß-carboline alkaloids, particularly the 9-methyl derivatives, are efficient photosensitizers. However, structure-activity relationships are missing and the photochemical mechanisms involved in the DNA photodamage still remain unknown. In the present work, we examined the capability of three 9-methyl-ß-carbolines (9-methyl-norharmane, 9-methyl-harmane and 9-methyl-harmine) to induce DNA damage upon UVA excitation at physiological pH. The type and extent of the damage was analyzed together with the photophysical and binding properties of the ß-carboline derivatives investigated. The results indicate that even at neutral pH most of the DNA damage is generated from the protonated form of the excited ß-carbolines in a type-I reaction. Oxidized purine residues are produced in high excess over oxidized pyrimidines, single-strand breaks and sites of base loss. In addition, the excited neutral form of the ß-carbolines is responsible for significant generation of cyclobutane pyrimidine dimers (CPDs) by triplet-triplet-energy transfer. In the case of 9-methyl-norharmane, the yield of CPDs is increased in D2O, probably due to less rapid protonation in the deuterated solvent.


Assuntos
Carbolinas/farmacologia , Corticoviridae/genética , Dano ao DNA/efeitos dos fármacos , DNA Viral/genética , DNA/genética , Fármacos Fotossensibilizantes/farmacologia , Animais , Carbolinas/química , Bovinos , Modelos Moleculares , Fármacos Fotossensibilizantes/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...